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Abstract 

In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure 
present in hypertext. Google is designed to crawl and index the Web efficiently and produce much more satisfying search 
results than existing systems. The prototype with a full text and hyperlink database of at least 24 million pages is available 
at http:llgoogle.stanford.edu/ 

To engineer a search engine is a challenging task. Search engines index tens to hundreds of millions of Web pages 
involving a comparable number of distinct terms. They answer tens of millions of queries every day. Despite the importance 
of large-scale search engines on the Web, very little academic research has been done on them. Furthermore, due to rapid 
advance in technology and Web proliferation, creating a Web search engine today is very different from three years 
ago. This paper provides an in-depth description of our large-scale Web search engine - the first such detailed public 
description we know of to date. 

Apart from the problems of scaling traditional search techniques to data of this magnitude, there are new technical 
challenges involved with using the additional information present in hypertext to produce better search results. This paper 
addresses this question of how to build a practical large-scale system which can exploit the additional information present 
in hypertext. Also we look at the problem of how to effectively deal with uncontrolled hypertext collections where anyone 
can publish anything they want. 0 1998 Published by Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The Web creates new challenges for information 
retrieval. The amount of information on the Web is 
growing rapidly, as well as the number of new users 
inexperienced in the art of Web research. People are 
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likely to surf the Web using its link graph, often start- 
ing with high quality human maintained indices such 
as Yahoo! 3 or with search engines. Human main- 
tained lists cover popular topics effectively but are 
subjective, expensive to build and maintain, slow to 
improve, and cannot cover all esoteric topics. Auto- 
mated search engines that rely on keyword matching 
usually return too many low quality matches. To make 
matters worse, some advertisers attempt to gain peo- 
ple’s attention by taking measures meant to mislead 
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automated search engines. We have built a large-scale 
search engine which addresses many of the problems 
of existing systems. It makes especially heavy use of 
the additional structure present in hypertext to provide 
much higher quality search results. We chose our sys- 
tem name, Google, because it is a common spelling 
of googol, or 10100 and fits well with our goal of 
building very large-scale search engines. 

1.1. Web search engines - scaling up: 1994-2000 

Search engine technology has had to scale dra- 
matically to keep up with the growth of the Web. In 
1994, one of the first Web search engines, the World 
Wide Web Worm (WWWW) [6] had an index of 
110,000 Web pages and Web accessible documents. 
As of November. 1997, the top search engines claim 
to index from 2 million (WebCrawler) to 100 million 
Web documents (from Search Engine Watch4). It 
is foreseeable that by the year 2000, a comprehen- 
sive index of the Web will contain over a billion 
documents. At the same time, the number of queries 
search engines handle has grown incredibly too. In 
March and April 1994, the World Wide Web Worm 
received an average of about 1500 queries per day. 
In November 1997, Altavista claimed it handled 
roughly 20 million queries per day. With the increas- 
ing number of users on the Web, and automated 
systems which query search engines, it is likely that 
top search engines will handle hundreds of millions 
of queries per day by the year 2000. The goal of our 
system is to address many of the problems, both in 
quality and scalability, introduced by scaling search 
engine technology to such extraordinary numbers. 

These tasks are becoming increasingly difficult as 
the Web grows. However, hardware performance and 
cost have improved dramatically to partially offset 
the difficulty. There are, however, several notable 
exceptions to this progress such as disk seek time and 
operating system robustness. In designing Google, 
we have considered both the rate of growth of the 
Web and technological changes. Google is designed 
to scale well to extremely large data sets. It makes 
efficient use of storage space to store the index. Its 
data structures are optimized for fast and efficient 
access (see Section 4.2). Further, we expect that 
the cost to index and store text or HTML will 
eventually decline relative to the amount that will 
be available (see Appendix B in the full version). 
This will result in favorable scaling properties for 
centralized systems like Google. 

1.3. Design goals 

I .3.1. Improved search quality 

1.2. Google: scaling with the Web 

Creating a search engine which scales even to to- 
day’s Web presents many challenges. Fast crawling 
technology is needed to gather the Web documents 
and keep them up to date. Storage space must be 
used efficiently to store indices and, optionally, the 
documents themselves. The indexing system must 
process hundreds of gigabytes of data efficiently. 
Queries must be handled quickly, at a rate of hun- 
dreds to thousands per second. 

Our main goal is to improve the quality of Web 
search engines. In 1994, some people believed that 
a complete search index would make it possible to 
find anything easily. According to Best of the Web 
1994 - Navigators5, “The best navigation service 
should make it easy to find almost anything on the 
Web (once all the data is entered).” However, the 
Web of 1997 is quite different. Anyone who has 
used a search engine recently, can readily testify 
that the completeness of the index is not the only 
factor in the quality of search results. “Junk results” 
often wash out any results that a user is interested 
in. In fact, as of November 1997. only one of the 
top four commercial search engines finds itself (re- 
turns its own search page in response to its name 
in the top ten results). One of the main causes of 
this problem is that the number of documents in 
the indices has been increasing by many orders of 
magnitude, but the user’s ability to look at docu- 
ments has not. People are still only willing to look 
at the first few tens of results. Because of this, as 
the collection size grows, we need tools that have 
very high precision (number of relevant documents 
returned, say in the top tens of results). Indeed, we 
want our notion of “relevant” to only include the 

’ http://www.searchenginewatch.com/ 5 http://botw.org/l99Wawardslnavigators.html 
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very best documents since there may be tens of 
thousands of slightly relevant documents. This very 
high precision is important even at the expense of 
recall (the total number of relevant documents the 
system is able to return). There is quite a bit of 
recent optimism that the use of more hypertextual 
information can help improve search and other ap- 
plications [4.9,12,3]. In particular, link structure 171 
and link text provide a lot of information for making 
relevance judgments and quality filtering. Google 
makes use of both link structure and anchor text (see 
Sections 2.1 and 2.2). 

1.32. Academic search engine research 
Aside from tremendous growth, the Web has also 

become increasingly commercial over time. In 1993, 
1.5% of Web servers were on .com domains. This 
number grew to over 60% in 1997. At the same time, 
search engines have migrated from the academic 
domain to the commercial. Up until now most search 
engine development has gone on at companies with 
little publication of technical details. This causes 
search engine technology to remain largely a black 
art and to be advertising oriented (see Appendix A 
in the full version). With Google, we have a strong 
goal to push more development and understanding 
into the academic realm. 

Another important design goal was to build sys- 
tems that reasonable numbers of people can actually 
use. Usage was important to us because we think 
some of the most interesting research will involve 
leveraging the vast amount of usage data that is 
available from modern Web systems. For example, 
there are many tens of millions of searches per- 
formed every day. However, it is very difficult to get 
this data. mainly because it is considered commer- 
cially valuable. 

Our final design goal was to build an architecture 
that can support novel research activities on large- 
scale Web data. To support novel research uses, 
Google stores all of the actual documents it crawls 
in compressed form. One of our main goals in de- 
signing Google was to set up an environment where 
other researchers can come in quickly, process large 
chunks of the Web, and produce interesting results 
that would have been very difficult to produce other- 
wise. In the short time the system has been up, there 
have already been several papers using databases 

generated by Google, and many others are underway. 
Another goal we have is to set up a Spacelab-like 
environment where researchers or even students can 
propose and do interesting experiments on our large- 
scale Web data. 

2. System features 

The Google search engine has two important fea- 
tures that help it produce high precision results. First, 
it makes use of the link structure of the Web to cal- 
culate a quality ranking for each Web page. This 
ranking is called PageRank and is described in de- 
tail in [7]. Second, Google utilizes links to improve 
search results. 

2.1. PageRank: bringing order to the Weh 

The citation (link) graph of the Web is an impor- 
tant resource that has largely gone unused in existing 
Web search engines. We have created maps contain- 
ing as many as 518 million of these hyperlinks, a 
significant sample of the total. These maps allow 
rapid calculation of a Web page’s “PageRank”, an 
objective measure of its citation importance that cor- 
responds well with people’s subjective idea of impor- 
tance. Because of this correspondence, PageRank is 
an excellent way to prioritize the results of Web key- 
word searches. For most popular subjects, a simple 
text matching search that is restricted to Web page 
titles performs admirably when PageRank prioritizes 
the results (demo available at google.stanford.edu). 
For the type of full text searches in the main Google 
system, PageRank also helps a great deal. 

2.1.1. Description of PageRank calculation 
Academic citation literature has been applied to 

the Web, largely by counting citations or backlinks 
to a given page. This gives some approximation of a 
page’s importance or quality. PageRank extends this 
idea by not counting links from all pages equally, 
and by normalizing by the number of links on a 
page. PageRank is defined as follows: 

We assume page A has pages TI...Tn bt*hich point 
to ir (i.e., are citations). The parameter d is N 
damping j&or which can he .set hetK*ern 0 and 1. 
We usually Set d to 0.85. There are tnore details 



about d in the ne-vt section. Also C(A) is defined 
as the number of links going out of page A. The 
PageRank of u page A is given as,follows: 

PR(A) = (I -d) 

PR(TI) 
+d(p 

PR( Tn) 

C(Tl) 
+...+- 

C( Tn) > 

Note that the PageRanks form a probability dis- 
tribution over Web pages, so the sum of all Web 
pages’ PageRanks will be one. 
PageRank or PR(A) can be calculated using a 

simple iterative algorithm, and corresponds to the 
principal eigenvector of the normalized link matrix 
of the Web. Also. a PageRank for 26 million Web 
pages can be computed in a few hours on a medium 
size workstation. There are many other details which 
are beyond the scope of this paper. 

2.12. ltituitit!e jitst~fificatioi~ 
PageRank can be thought of as a model of user 

behavior. We assume there is a “random surfer” who 
is given a Web page at random and keeps clicking on 
links. never hitting “back” but eventually gets bored 
and starts on another random page. The probability 
that the random surfer visits a page is its PageRank. 
And, the d damping factor is the probability at each 
page the “random surfer” will get bored and request 
another random page. One important variation is to 
only add the damping factor d to a single page, or a 
group of pages. This allows for personalization and 
can make it nearly impossible to deliberately mislead 
the system in order to get a higher ranking. We have 
several other extensions to PageRank, again see [7]. 

Another intuitive justification is that a page can 
have a high PageRank if there are many pages that 
point to it. or if there are some pages that point to 
it and have a high PageRank. Intuitively, pages that 
are well cited from many places around the Web 
are worth looking at. Also, pages that have perhaps 
only one citation from something like the Yahoo! h 
homepage are also generally worth looking at. If a 
page was not high quality, or was a broken link, 
it is quite likely that Yahoo’s homepage would not 
link to it. PageRank handles both these cases and 
everything in between by recursively propagating 
weights through the link structure of the Web. 

h http:llwww.yahoo.comi 

2.2. Anchor- test 

The text of links is treated in a special way in 
our search engine. Most search engines associate the 
text of a link with the page that the link is on. In 
addition, we associate it with the page the link points 
to. This has several advantages. First, anchors often 
provide more accurate descriptions of Web pages 
than the pages themselves. Second, anchors may 
exist for documents which cannot be indexed by a 
text-based search engine, such as images, programs. 
and databases. This makes it possible to return Web 
pages which have not actually been crawled. Note 
that pages that have not been crawled can cause 
problems. since they are never checked for validity 
before being returned to the user. In this case, the 
search engine can even return a page that never 
actually existed, but had hyperlinks pointing to it. 
However, it is possible to sort the results, so that this 
particular problem rarely happens. 

This idea of propagating anchor text to the page 
it refers to was implemented in the World Wide Web 
Worm [ 61 especially because it helps search non-text 
information, and expands the search coverage with 
fewer downloaded documents. We use anchor prop- 
agation mostly because anchor text can help provide 
better quality results. Using anchor text efficiently is 
technically difficult because of the large amounts of 
data which must be processed. In our current crawl 
of 24 million pages. we had over 259 million anchors 
which we indexed. 

3. Related work 

Search research on the Web has a short and con- 
cise history. The World Wide Web Worm (WWWW) 
[6] was one of the first Web search engines. It was 
subsequently followed by several academic search 
engines, many of which are now public companies. 
Compared to the growth of the Web and the im- 
portance of search engines there are precious few 
documents about recent search engines [S]. Accord- 
ing to Michael Mauldin (chief scientist, Lycos Inc.) 
1.51, “the various services (including Lycos) closely 
guard the details of these databases”. However, there 
has been a fair amount of work on specific fea- 
tures of search engines. Especially well represented 



is work which can get results by post-processing 
the results of existing commercial search engines, or 
produce small scale “individualized’ search engines. 
Finally, there has been a lot of research on informa- 
tion retrieval systems. especially on well controlled 
collections [ 111. 

However. work on information retrieval has 
mostly been on fairly small. well controlled col- 
lections such as the Text Retrieval Conference [lo]. 
Things that work well on TREC often do not produce 
good results on the Web. For example, the standard 
vector space model tries to return the document that 
most closely approximates the query, given that both 
query and document are vectors defined by their 
word occurrence. On the Web, this strategy often 
returns very short documents that are the query plus 
a few words. For example. we have seen a major 
search engine return a page containing only “Bill 
Clinton Sucks” and picture from a “Bill Clinton” 
query. Given examples like these, we believe that 
the standard information retrieval work needs to be 
extended to deal effectively with the Web. 

The Web is a vast collection of completely uncon- 
trolled heterogeneous documents. Documents vary 
significantly in language, format, and style. There 
can be many orders of magnitude of difference in 
two documents’ size, quality, popularity, and trust- 
worthiness. All of these are significant challenges to 
effective searching on the Web. They are somewhat 
mediated by the availability of auxiliary data such as 
hyperlinks and formatting and Google tries to take 
advantage of both of these. 

4. System anatomy 

In this section, we will give a high level overview 
of how the whole system works as pictured in Fig. 1. 
Further sections will discuss the applications and 
data structures not mentioned in this section. Most 
of Google is implemented in C or C++ for efficiency 
and can run in either Solaris or Linux. 

In Google, the Web crawling (downloading of 
Web pages) is done by several distributed crawlers. 
There is a URLserver that sends lists of URLs to 
be fetched to the crawlers. The Web pages that are 

Fig I High level Goo$le architecture 

fetched are then sent to the storeserver. The store- 
server then compresses and stores the Web pages into 
a repository. Every Web page has an associated 1D 
number called a docID which is assigned whenever 
a new URL is parsed out of a Web page. The in- 
dexing function is performed by the indexer and the 
sorter. The indexer performs a number of functions. 
It reads the repository, uncompresses the documents. 
and parses them. Each document is converted into a 
set of word occurrences called hits. The hits record 
the word, position in document, an approximation of 
font size, and capitalization. The indexer distributes 
these hits into a set of “barrels”, creating a partially 
sorted forward index. The indexer performs another 
important function. It parses out all the links in every 
Web page and stores important information about 
them in an anchors tile. This file contains enough in- 
formation to determine where each link points from 
and to. and the text of the link. 

The URLresolver reads the anchors tile and con- 
verts relative URLs into absolute URLs and in turn 
into doclDs. It puts the anchor text into the forward 
index, associated with the docfD that the anchor 
points to. It also generates a database of links which 
are pairs of docIDs. The links database is used to 
compute PageRanks for all the documents. 



The sorter takes the barrels, which are sorted by 
docID (this is a simplification, see Section 4.2.5 in 
the full version), and resorts them by wordID to 
generate the inverted index. This is done in place 
so that little temporary space is needed for this op- 
eration. The sorter also produces a list of wordIDs 
and offsets into the inverted index. A program called 
DumpLexicon takes this list together with the lex- 
icon produced by the indexer and generates a new 
lexicon to be used by the searcher. The searcher is 
run by a Web server and uses the lexicon built by 
DumpLexicon together with the inverted index and 
the PageRanks to answer queries. 

Google’s data structures are optimized so that a 
large document collection can be crawled, indexed. 
and searched with little cost. Although, CPUs and 
bulk input output rates have improved dramatically 
over the years, a disk seek still requires about 10 ms 
to complete. Google is designed to avoid disk seeks 
whenever possible, and this has had a considerable 
influence on the design of the data structures. The 
full version of this paper contains a detailed discus- 
sion of all the major data structures. We only give a 
brief overview here. 

Almost all of the data for Google is stored in 
Bigfiles which are virtual tiles we developed that can 
span multiple tile systems and support compression. 
The raw HTML repository uses roughly half of the 
necessary storage. It consists of the concatenation of 
the compressed HTML of every page, preceded by 
a small header. The document index keeps informa- 
tion about each document. It is a fixed width ISAM 
(Index sequential access mode) index, ordered by 
doclD. The information stored in each entry includes 
the current document status, a pointer into the repos- 
itory, a document checksum, and various statistics. 
Variable width information such as URL and title 
is kept in a separate file. There is also an auxiliary 
index to convert URLs into docIDs. The lexicon 
has several different forms for different operations. 
They all are memory-based hash tables with varying 
values attached to each word. 

A hit list corresponds to a list of occurrences of 
a particular word in a particular document includ- 
ing position, font, and capitalization information. Hit 

lists account for most of the space used in both the 
forward and the inverted indices. Because of this, it 
is important to represent them as efficiently as possi- 
ble. We considered several alternatives for encoding 
position, font, and capitalization - simple encoding 
(a triple of integers), a compact encoding (a hand 
optimized allocation of bits), and Huffman coding. 
In the end we chose a hand optimized compact en- 
coding since it required far less space than the simple 
encoding and far less bit manipulation than Huffman 
coding.ding. Our compact coding uses two bytes for 
every hit. The details of this coding are in the full 
version of this paper. The length of a hit list is stored 
before the hits themselves. To save space, the length 
of the hit list is combined with the wordID in the 
forward index and the docID in the inverted index. 

The forward index is actually already partially 
sorted. It is stored in a number of barrels (we used 
64). Each barrel holds a range of wordIDs. If a docu- 
ment contains words that fall into a particular barrel, 
the docID is recorded into the barrel, followed by a 
list of wordIDs with hitlists which correspond to those 
words. This scheme requires slightly more storage be- 
cause of duplicated docIDs but the difference is very 
small for a reasonable number of buckets and saves 
considerable time and coding complexity in the tinal 
indexing phase done by the sorter. The inverted index 
consists of the same barrels as the forward index. ex- 
cept that they have been processed by the sorter. For 
every valid wordID, the lexicon contains a pointer 
into the barrel that wordID falls into. It points to a 
list of docIDs together with their corresponding hit 
lists. This list is called a doclist and represents all the 
occurrences of that word in all documents. 

An important issue is in what order the doclDs 
should appear in the doclist. One simple solution 
is to store them sorted by docID. This allows for 
quick merging of different doclists for multiple word 
queries. Another option is to store them sorted by 
a ranking of the occurrence of the word in each 
document. This makes answering one word queries 
trivial and makes it likely that the answers to multiple 
word queries are near the start. However, merging is 
much more difticult. Also. this makes development 
much more difficult in that a change to the ranking 
function requires a rebuild of the index. We chose 
a compromise between these options, keeping two 
sets of inverted barrels - one set for hit lists which 
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include title or anchor hits and another set for all 
hit lists. This way. we check the first set of barrels 
tirst and if there are not enough matches within those 
barrels we check the larger ones. 

search engines seemed to have made great progress 
in terms of efficiency. Therefore, we have focused 
more on quality of search in our research, although 
we believe our solutions are scalable to commercial 
volumes with a bit more effort. 

4.3. Crmvling the Web 

Running a Web crawler is a challenging task. 
There are tricky performance and reliability issues 
and even more importantly, there are social issues. 
Crawling is the most fragile application since it 
involves interacting with hundreds of thousands of 
Web servers and various name servers which are all 
beyond the control of the system. 

In order to scale to hundreds of millions of Web 
pages, Google has a fast distributed crawling sys- 
tem. A single URLserver serves lists of URLs to a 
number of crawlers (we typically ran about 3). Both 
the URLserver and the crawlers are implemented in 
Python. Each crawler keeps roughly 300 connections 
open at once. This is necessary to retrieve Web pages 
at a fast enough pace. At peak speeds, the system 
can crawl over 100 Web pages per second using four 
crawlers. A major performance stress is DNS lookup 
so each crawler maintains a DNS cache. Each of the 
hundreds of connections can be in a number of differ- 
ent states: looking up DNS, connecting to host, send- 
ing request. and receiving response. These factors 
make the crawler a complex component of the system. 
It uses asynchronous IO to manage events, and a num- 
ber of queues to move page fetches from state to state. 

Google maintains much more information about 
Web documents than typical search engines. Ev- 
ery hitlist includes position, font, and capitalization 
information. Additionally, we factor in hits from 
anchor text and the PageRank of the document. 
Combining all of this information into a rank is dif- 
ficult. We designed our ranking function so that no 
one factor can have too much influence. For every 
matching document we compute counts of hits 01 
different types at different proximity levels. These 
counts are then run through a series of lookup tables 
and eventually are transformed into a rank. This pro- 
cess involves many tunable parameters. We have not 
spent much time tuning the system; instead we have 
developed a feedback system which will help us tune 
these parameters in the future. 

5. Results and performance 

The more than half million servers that we crawl 
are run by tens of thousands of Webmasters. As 
a result crawling the Web involves interacting with 
a fair number of people. Almost daily we receive 
emails like “Wow. you looked at a lot of pages 
from my Web site. How did you like it?’ Other 
interactions involve copyright issues and obscure 
bugs which may only arise on one page out of 
ten million. Since large complex systems such as 
crawlers will invariably cause problems, there needs 
to be significant resources devoted to reading the 
email and solving these problems as they come up. 

4.4. Searching 

The most important measure of a search engine 
is the quality of its search results. While a complete 
user evaluation is beyond the scope of this paper, 
our own experience with Google has shown it to 
produce better results than the major commercial 
search engines for most searches. As an example 
which illustrates the use of PageRank, anchor text, 
and proximity, Fig. 2 shows Google’s results for a 
search on “bill Clinton”. These results demonstrates 
some of Google’s features. The results are clus- 
tered by server. This helps considerably when sifting 
through result sets. A number of results are from 
the whitehouse.gov domain which is what one may 
reasonably expect from such a search. Currently, 
most major commercial search engines do not return 
any results from whitehouse.gov, much less the right 
ones. Notice that there is no title for the first result. 
Instead, Google relied on anchor text to determine 
this was a good answer to the query. Similarly, the 
fifth result is an email address which, of course. is 
not crawlable. It is also a result of anchor text. 

The goal of searching is to provide quality search All of the results are reasonably high quality 
results efficiently. Many of the large commercial pages and. at last check, none were broken links. 



Query: bill clinton 
httn:/iwww.whitehouse.gov:’ 
100.00% - (no date) (OK) 
http:llwww.whitehouse.govl 

Office of the President 
99.67%~ (Dee 23 1996) (2K) 

http:/iwww.whitehouse.govWH/EOP/OPlhtmllOP_Home.htm~ 
Welcome To The White House 
99.98% - (Nov 09 1997) (5K) 
http:llwww.whitehouse.govAVHAVelcome.html 
Send Electronic Mail to the President 
99.86% s (Jul 14 1997) (5K) 

mailto:nresident(~whitehouse.aov 
99.98% - 

mailto:President&whitehouse.aov 
99.27% - 

The “Unofficial” Bill Clinton 
94.06’/- (Nov 11 1997) (14K) 
http:ilzpub.comlunlun-bc.html 

Bill Clinton Meets The Shrinks 
86.27% si (Jun 29 1997) (63K) 
http://zpub.com/unlun-bc9.html 

President Bill Clinton - The Dark Side 
97.27% - (Nov 10 1997) (15K) 
http:lAvww.realchange.orgiclinton.htm 
$3 Bill Clinton 
94.73% P (no date) (4K) 
http:/iwww.gatewy.net/-tjohnsonIc/clintonl.html 

- 
Fig. 2. Samplr rrults from Googlr. 

This is largely because they all have high PageRank. 
The PageRanks are the percentages in red along 
with bar graphs. Finally. there are no results about 
a Bill other than Clinton or about a Clinton other 
than Bill. This is because we place heavy importance 
on the proximity of word occurrences. Of course a 
true test of the quality of a search engine would 
involve an extensive user study or results analysis 
which we do not have room for here. Instead. we 
invite the reader to try Google for themselves at 
http://google.stanford.edu. 

Aside from search quality, Google is designed to 
scale cost effectively to the size of the Web as it 
grows. One aspect of this is to use storage efficiently. 
Table 1 has a breakdown of some statistics and 
storage requirements of Google. 

It is important for a search engine to crawi and in- 
dex efficiently. This way information can be kept up 
to date and major changes to the system can be tested 
relatively quickly. In total it took roughly 9 days to 
download the 26 million pages (including errors). 
However. once the system was running smoothly. 



Table I 
Statistics 

Storage htiltistics 

Total srze of fetched pages 

Compreabed repoaitoq 
Short inverted index 
Full inverted index 

Lexicon 
Temporary anchor data 

(not in total 1 

Document index incl. 
variahlc width data 
Links database 

Total without repository 
Tmal w.nh rcpoaitorp 

117.8 GB 
5.33 GB 

4.1 cl3 
37.’ GB 

203 MB 

6.6 GB 

Y.7 GB 
3.‘) GB 

55.2 GB 
108.7 GB 

Web page statihticx 

Number of Web pages fetched 3-1 million 
Number of tirls seen 76.5 million 

Number of E-mail addresses I .7 million 
Number of 404‘s I .6 million 

it ran much faster, downloading the last 11 million 
pages in just 63 hours, averaging just over 4 million 
pages per day or 48.5 pages per second. The indexer 
runs at roughly 54 pages per second. The sorters can 
be run completely in parallel; using four machines, 
the whole process of sorting takes about 24 hours. 

Improving the performance of search was not the 
major focus of our research up to this point. The 
current version of Google answers most queries in 
between 1 and 10 seconds. This time is mostly dom- 
inated by disk IO over NFS (since our disks are 
spread over a number of machines). Furthermore, 
Google does not have many of the common op- 
timizations used to speed up information retrieval 
systems. such as query caching, subindices on com- 
mon terms. and other common optimizations. We 

Quer! Initial query 

intend to speed up Google considerably in the fu- 
ture. Table 2 has some sample query times from the 
current version of Google. 

6. Conclusions 

Google is designed to be a scalable search en- 
gine. The primary goal is to provide high quality 
search results over a rapidly growing World Wide 
Web. Google employs a number of techniques to 
improve search quality including page rank. all- 
char text. and proximity information. Furthermore, 
Google is a complete architecture for gathering Web 
pages, indexing them, and performing search queries 
over them. 

A large-scale Web search engine is a complex sys- 
tem and much remains to be done. Our immediate 
goals are to improve search efficiency and to scale to 
approximately 100 million Web pages. Some simple 
improvements to efficiency include query caching, 
smart disk allocation, and subindices. Another area 
which requires much research is updates. We must 
have smart algorithms to decide what old Web pages 
should be recrawled and what new ones should be 
crawled. Work toward this goal has been done in 
[2]. One promising area of research is using proxy 
caches to build search databases. since they are 
demand driven. We are planning to add simple fea- 
tures supported by commercial search engines like 
boolean operators. negation. and stemming. How- 
ever. other features are just starting to be explored 
such as relevance feedback and clustering (Google 
currently supports a simple hostname based cluster- 
ing). We also plan to support user context (like the 

Same query repented (IO mostly cached t 

CPU time (5) 

0.09 
I .77 

0.15 

1.31 

Total time (s) 

3.13 
3.X-I 

1.86 
9.63 

CPU time (\I 

0.06 
I.66 

0.20 
I.16 

Total time (5 1 

0.06 
1.80 
0.24 

I.16 



user’s location), and result summarization. We are 
also working to extend the use of link structure and 
link text. Simple experiments indicate PageRank can 
be personalized by increasing the weight of a user’s 
home page or bookmarks. As for link text, we are 
experimenting with using text surrounding links in 
addition to the link text itself. A Web search engine 
is a very rich environment for research ideas. We 
have far too many to list here so we do not expect 
this Future Work section to become much shorter in 
the near future. 

6.2. High quality search 

The biggest problem facing users of Web search 
engines today is the quality of the results they get 
back. While the results are often amusing and ex- 
pand users’ horizons, they are often frustrating and 
consume precious time. For example, the top re- 
sult for a search for “Bill Clinton” on one of the 
most popular commercial search engines was the 
Bill Clinton Joke of the Day: April 14, 1997 ‘. 
Google is designed to provide higher quality search 
so as the Web continues to grow rapidly, informa- 
tion can be found easily. In order to accomplish this 
Google makes heavy use of hypertextual information 
consisting of link structure and link (anchor) text. 
Google also uses proximity and font information. 
While evaluation of a search engine is difficult, we 
have subjectively found that Google returns higher 
quality search results than current commercial search 
engines. The analysis of link structure via PageRank 
allows Google to evaluate the quality of Web pages. 
The use of link text as a description of what the link 
points to helps the search engine return relevant (and 
to some degree high quality) results. Finally, the use 
of proximity information helps increase relevance a 
great deal for many queries. 

6.3. Scalable urchitecturr 

Aside from the quality of search, Google is de- 
signed to scale. It must be efficient in both space 
and time, and constant factors are very important 
when dealing with the entire Web. In implement- 
ing Google, we have seen bottlenecks in CPU, 

7 http://www.io.com/-cjburke/clinton/9704l4.html 

memory access, memory capacity, disk seeks. disk 
throughput, disk capacity, and network IO. Google 
has evolved to overcome a number of these bot- 
tlenecks during various operations. Google’s major 
data structures make efficient use of available stor- 
age space. Furthermore, the crawling, indexing. and 
sorting operations are efficient enough to be able to 
build an index of a substantial portion of the Web - 
24 million pages, in less than one week. We expect 
to be able to build an index of 100 million pages in 
less than a month. 

6.4. A wsearch tool 

In addition to being a high quality search engine. 
Google is a research tool. The data Google has 
collected has already resulted in many other papers 
submitted to conferences and many more on the way. 
Recent research such as [ 11 has shown a number of 
limitations to queries about the Web that may be 
answered without having the Web available locally. 
This means that Google (or a similar system) is not 
only a valuable research tool but a necessary one 
for a wide range of applications. We hope Google 
will be a resource for searchers and researchers all 
around the world and will spark the next generation 
of search engine technology. 
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